
UNCLASSIFIED

AD 403'1 02

DEFENSE DOCU\ENT•ITION CENTER
'CR

SCIENTIFIC AND TP.'iNICAL INFORMATION

CAMERON STPAIO, FOVXANDRIA. VIRGINIA

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



ASD-TDR462475Y eS,403 702
0
1 RESPONSE OF MISSILE STRUCTURES TO
O IMPULSE LOADING

0

C/)
< TECHNICAL DOCUMENTARY REPORT ASD-TDR-62-475

MARCH 1963

Flight Dynamics Laboratory

Aeronautical Systems Division

Air Force Systems Command

Wright-Patterson Air Force Base, Ohio

Project No. 6906, Task No. 690601

DDC
[Prepared under Contract No. AF 33(616)-7956

by
T. Wah MAY 1419U

L. U. Rastrelli E4
N. L. Basdekas
R. C. DeHart

Southwest Research Institute, San Antonio 6, Texas] Ijs]iA 1



NOTICES

When Government drawings, specifications, or other data are used for any

purpose other than in connection with a definitely related Government procure-
ment operation, the United States Government thereby incurs no responsibility
nor any obligation whatsoever; and the fact that the Government may have
formulated, furnished, or in any way suppliedthe said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as in any
manner licensing the holder or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Armed
Services Technical Information Agency, (ASTIA). Arlington Hall Station,
Arlington 12, Virginia.

This report has been released to the Office of Technical Services, U.S.

Department of Commerce, Washington 25, D.C., in stock quantities for sale

to the general public.

Copies of this report should not be returned to the Aeronautical Systems
Division unless return is required by security considerations, contractual

obligations, or notice on a specific document.

B
Z2-675M. 300, 5-.-63



4-u-

z!1 III

-A 9 P '~

IN A 04 .4 a4

j; A 'NU.

144

~A 0

4'U

I~ 00

0 41

H H H



FOREWORD

This Project, (6906) "Nuclear Weapon Effects os Space Vehicles" and Task. (690601) "Deter-
mination of High Altitude Nuclear Weapon Effects on Space Vehicles, "are a part of the Air Force
Systems Command applied research program 710A•' NUCLEAR WEAPONS EFFECTS."

The study was initiated by the Flight Dynamics Laboratory, WWRMD. under Project No. 6906,
Task No. 690601. The project officer was Mr. L. E. Gilbert. The investigation was conducted by
the Southwest Research Institute during the period from 1 March 1961 through 31 March 1962.
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ABSTRACT

Procedures for analytically predicting the response of missile bodies to blast loadings are
presented. The investigation involves the behavior of cylindrical shells (with various end-closures)
and circular, flat plates. The numerical results obtained from the analytical methods compare
favorably with the experimental data acquired during the study.

PUBLICATION REVIEW

This technical documentary report has been reviewed and is approved.

FOR THE COMMANDER:

UItRDM F. R
Chlrf, Structures Branch
nSiht Dyns•cs Laboratory
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1. INTRODUCTION

In evaluating the vulnerability of missile systems to nuclear antimissile weapons, one
aspect of considerable importance is the response of the vehicle's structure. The analytical (and
to a lesser extent, the experimental) information presented in this report is directed towards
developing procedures for predicting the response of missile bodies as represented by cylindrical
shells with various types of end-closures.

Within the concept of structural response, the most significant parameters which con-
stitute a measurement of the damanj a missile will sustain as the result of blast loadings are the
dtformations and accelerations. Consequently, each of the analytical procedures set out to ini-
tially define the tim,- dependent variation of the displacement components. Once this is accom-
plished, it becomes a simple matter to obtain accelerations as functions of time. For the particular
shock sensitive components associated with each missile system, this would provide an indication of
the critical acceleration forces to be expected.

It is analytically expeditious to subdivide the overall missile structure into two parts, each
representing different vulnerability aspects. The first is to consider the cylinders' end-closures
only insofar as their restraint contributes to deformational response of the shell. Here, it is
implied that the missile shell itself is most vulnerable to nuclear weapon effects. The other
approach is to consider the cylinder end-closures themselves. For example, a flat, circular plate
would require careful analysis if it can be shown its response is considerably more severe than that
experienced by the shell.

Accordingly, in Section 2, comparatively straightforward analytical procedures for
acquiring displacements that are reasonably accurate and not unnecessarily laborious are pre-
sented. For the cylindrical shell, both the small and large deflection, linear-elastic theories are
used. In the small deflection approach, the effect of end-closures (simple, fixed and elastic sup-
port) are considered. Two treatments of the circular, flat plate are presented: one entails the
dynamic response of circular plates at large amplitudes and the other the plastic collapse of cir-
cular plates under blast loadings. Each analytical procedure is carried out in sufficient detail so
as to present results which are immediately applicable to specific problems.

In Sectio.a 3, extensive numerical computations are presented for the analytical procedure
based on the linear-elastic, small displacement shell theory. In evaluating the analytical pro-
cedures for predicting the response of cylindrical shell structures to blast loadings, there are
several logical, as well as practical, reasons for initially investigating the adequacy of the simplest
method. Foremost among these reasons is the fact that these methods provide numerical solutions
for a wide variety of variables with a minimum expenditure in computational effort. The extent to
which various load arid time parameters and certain approximations influence the numerical
answers and cause these predicted answers to approach or deviate from the experimental results
can be quickly determined.

Moreover, once these numerical solutions are available, they also become of value in form-
ing a foundation for subsequent, more complex analytical procedures. This approach has been
adopted in the numerical analysis of the cylindrical shells. In Section 3 are the results of the cal-
culations using analytical methods based on linear-elastic, small displacement theory. Included
are comparisons of various combinations of overpressure and positive phase durations.

The information and data obtained in the limited experimental portion of the program are

presented in Appendices I and II. These data (involving the radial displacements) are compared
with the analytical results in Section 4.

Manuscript released by the authors July 1962 for publication as an ASD Technical Documentary

Report.
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2. ANALYTICAL PROCEDURES

2.1 Response of Cylindrical Shells to Impulsive Loading.

2. 1. 1 Linear-Elastic, Small-Deflection Theory

The development of the necessary equations for the analysis of cylindrical shels begins
with the displacement (Equation(I. 12)] and frequency [Equation(I. 13)1 equations in Appendix I. We
assume that the cylinder's end-closures consist of elastic media which offer unequal, elastic
restraint against rotation. For generality, we define these elastic restraints as S1 at x = 0 and
S. at x = L where S is the stiffness per unit length of the medium or the moment required to rotate
a unit length of the medium through an angle of one radian.

The boundary conditions are taken as

aw

Mx+ Ix =L 0 2 L 0. 1)

!-w= 0

wx=O 0

wI =L 0

The first two equations denote the condition of continuity between the shell and the end-closures.
The condition that the radial displacements are zero at the shell's boundaries appears reasonable,
particularly for end-closures (such as flat plates) which offer a high degree of transverse restraint.
Since

reZw nzv w]

Equations (2. 1) may be rewritten as follows

a 2w 8w 0

ax ;x=0 FX L 0ZZ

W1  
R1 0wx 0 0

8w I x2•- L 0

wI = 0

x=2



where

SL
D

Utilizing Equations (Z. 2) in Equations (1. 12) (Appendix I) we obtain the following set of
linear, homogeneous equations

.1.
Cje ci = 0

xf , XC 1(j 1. l.Z3. 4) (2.3)

Z X X*
Xj e - R. e

1 
R2 I jCj = 0

Since XI= : X' r, )X3 = 'K, X4 -iK (see Appendix I), Equations (2.3) yield the
following coefficient determinant which must vanish in order for these equations to be consistent.

1 1 1 1

I e
eK e-K eiK e-iK

= 0 (Z. 4)
K- RI K+ RI -+iRI) -(-iRl)

(Kc R z)eK (K + Rz)e-K -(K + iR )ei' -(K - iR )e-iK

Expanding the determinant, we have

8i[ZeZ sinh x sin K + (R - R?)(sinh K cos P - comh K sin K)

+ RIRZ(1 - coshK cos K) = 0 (2.5)

Given the appropriate values of R1 and R 2 . the corresponding values of Kc may be determined,
thereby providing the necessary values for ai = ki/L = K/L for the frequency equation
(Equation (I. 13)].

The related displacement equations are

unn(x, , t) = cos m*sinrn(t { (in K comb ÷ sinh r. cos

+ rR 1 [r, (sih r- + sin (.comb )] + ZZ(cos 1c comh

-combhK coo.~ - 1 R, [r, (sinh !-+ sin4~

+ 1 rz (coo +comb n] (2.)

3



vmn(x ) =K*C ZK (sin K sinhc + s inhIc sin )

PA fi M+ osh-i -on +wini-ns

+ KR r(oshi -- -o i r (sin(K. - Binh x)

I Ir (C L. L
+2R(coo r sinh4 Z! - cosh it sinh K)l RIR2 [r (ah y

Wren(X, ÷, t) = •- COs m÷ sinl Wmnt {ZK si K sinh " + sir11 K sin1

+ �KR rz Cosh-- -- cos +r 4  sin-- sinh- )]

+ 2KR2_ \cos K sh-L- - cosh K i - RIR 2 r3 f~csx•

- cos + (.2 sin !- - sinh (2.8)

whe re
S=m2x sin) c+ ooRm(sinh K- osh 0 + sinK -cos K) + ZKR Kosi

+RR 2(sinh- cosh• + sinh !+ cos Ki)

S= si coo sK

F3 = cosh K - COS K

F4 = cosh K + COB K

Having defined the relation for the deflections, it then becomes a simple matter to obtain the
accelerations as functions of time.

For the case where the elastic restraints at either end of the cylinder are equal
(RI = RZ = R), Equation (2. 5) reduces to

A = 8i[K
2 

sinh K sin K + R (1 - cosh r cos r)] = 0 (2.9)

and Equation 2.8 becornes:

4



wmn(x, ,t) = 1 coN m+ sinnnt 2r2 sin K sinh!K + sinh i sin i)

- IR [r? (csx - cosh -r) + r3 (slnh'x+ sin a)]

-Rz [r 3 (cosh xx - cooa ) +r( i (2. 10)

where

= ZK sin K + R(K + R)[sinh K - cosh K + sine + cos IC

Similar expressions for umn(x. ,O. t) and vmn(X, • t) are found by using the relations

K 3 
8 wmn(x, I* t)Urnn(X,*•, t) KI x

K2 Owmn(x, *, t)Vmn(X,+.,t) =-K •

If the cylinder's end-closures are extremely rigid such that the boundary conditions
may be assumed fixed, then R --e o and Equations (2. 5) and (2.8) reduce to

A = 1- coshIrcosIc 0 (2. 12)

Wmn(x,+.t) = con m+ sinwmnt[r 3 (coo- cosh

+ rz(sinh-L - sin--)] (2.13)

where

q = sinh - cosh ic + sin +cOsK

For the condition where the cylinder's end-closures are such that the boundaries are
simply supported, then R = 0 and Equations (2. 5) and (2.8) become

A = sinh r sinK 0 (2.14)

Wmn (x- +, t) C4 COO m+ sin %xt sin [Ref. Eq. (2. 3)) (2.15)

Wren(x,•))t) - -C~c~ m~ slO~nt sn-5



Equations (Z. 12) and (2. 14) provide the extreme values of x. That is, for the cylindri-
cal shell with both edge@ fixed, Equation (Z. 12) gives

1
IC -- [Zn÷ +1V= n'w (n-- 1,2,3,.... )(2.16)

t2

whereas for the simply supported boundaries, Equation (2.14) gives

r = nW (n= 1,2,3 .... ) (2.17)

Similarly, from Equation (2. 9), we obtain the variation of r with the term representing the end-
closures' atiffnesses. This is shown in Figure 2.1.

2. 1. 2 Inear-Elastic, Large Deflection Theory*

In order to avoid the prohibitive difficulties associated with a detailed analysis and
thereby obtain a solution that will lead to useful information, we assume that:

(a) The elements normal to the middle surface remain normal and unstretched
(extensional or membrane vibrations)

(b) The cylinder wall is thin (say !<. I

(c) The longitudinal (u) and tangential (v) displacement components are small
compared to the radial displacement (w).

For the equations of motion, we have

8Nxx ON

O - y -B h
(2. 18)

ON ON
+ -y = phV

Following the format of Fung and Sechler(2. 1), we define the strain components at the shell's
middle surface as

Bu + I(w)

"x 2 + OSx

Bv 1 ( w! w
y= - " - (2. 19)

= u Bv Ow Ow
tx-y Ty+5 + r 5X By-

By neglecting the inertia terms in the x and y directions (this corresponds to a first order approxi-
mation in the perturbation procedure) and introducing the stress function F(x, y) where Equa-
tions (Z. 17) are satisfied by

_ZF a 2 F a2F

z -= Nxx, - = N", - =-- Nxy
By Ox

*Notation in this section same as that given in Appendix I except where noted.

6I
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we obtain the compatibility equation

4r/ a~ 2 W ' 2 2w 2 owl
V VF = Eh L[(a8- " -a ;__ -. 0)

and the equation of motion for the radial displacement

4 w 2 22 Z
4 118w a F 2 a w a F a w a F

+ + p(x,+,t) -p] (A.21)

The problem now becomes one of assuming a form for the radial displacement, using
it to determine the stress function from Equation (2. 20) which, in turn, is applied to Equa-
tion (2. 21). The latter equation suggests that the radial displacement may be of the form

w(x. y, t) = f(t) " G(x, y)

where G(x, y) denotes the mode shape.

The most appropriate expression is one which is sufficiently complete so as to embrace
all the significant parameters but not unduly complex so as to complicate the analysis and intro-
duce refinements that are not commensurate with the required accuracy of the final numerical
answers.

As an example of a simple mode shape, we take

w(xy,t) = f(t)[ sin ax cos Py + + sin ox cos -'yJ (2.22)

where a = wiL, J = 1/a, 7 = m/a, and m denotes the number of circumferential half waves.
Using Equation (Z. 22) in Equation (Z. 20) and after extensive algebraic manipulation, we arrive at
the following expression for the stress function

Eh f(tfj
2o

4 [KI cosB ZPy + K2 coB ZyY + K3 coB (P - Y)Y + K 4 cos (P + 7)Y

+ K 5 cos Zox + K6 cos (P - 'Y)f cos Zax + K7 cos (P + 7)y cos Zax

+ K18 sin ax coo Py + K9 sin ax cos -y] (2.23)

where
!2

KI = . K 4 = (p+ y) 2  4.1 + (P + -)K 2

! 2 P2z+ +27 4

2 2 4

4ý K = -P- +< 4... K8 = 4 h
K2 8Y5 8C4 f(t)a(Qz + P)

4 ÷2 4 (P,,+ L) 244
K3 =-- K6 = zK9

(P-7) [4a + (P- Y) I f(t)a(a + 7)
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For a radial displacement equation of the form

w(x, y. t) - f(t)[sin ax coo Py + sin ax coo yy + 0 sin ax] (2.24)

the stress function is as follows

F = Eh4f(t)] 2  I2 [K 1 coon 22y+ K co y+K 3 cos ( - y)y + K4 cos(P+)y

+ K5 coo 27x + K6 con (P - y)y cos Zax + K7 coo (1 + 7)y coo Zcx

+ K8 coB 2ax coo Py + K 9 cos ZcLx coo 'y + K1 0 cos Py + KI coos 7y

+ K1 2 sin ax coB Py + K1 3 sin Cx COB yy + K1 4 sin ax) (2.25)

where K1 through K7 , K1 2 and K1 3 are the same as those given for Equation (2.23) (except
that 1 = 1) and

2002 20
K8 -(4a2 2 K20 -- T

(4a +~ P 1 =

2 2 2 K1 1
(4a +~ P

As a final example, for

w(x, 4, t) = f(t)[A sinax con Py + sin cx cos yy + X sin2 ox] (2.26)

the stress function becomes

F = Eh[f(t)] 2,L2
4 [K 1 co3 2py+K 2 cos 2 C+K3 cos (P - )y+K 4 cos (P + Y)y

+ K5 con 2ax + K6 coo (P - ,')y cog Zox + K7 cos (1 + y)Y cooo 2ax

+ K8 sin ax cos Py + K9 sin ax coo -y + K1 0 sin 3ax cor Py

+ KII sin 3&x con yyj (2.27)

where K1 through K4 , K 6 , and K7 are identical to those for -Equation (2. 23) (for 4 = 1) and

K + PA af(t)

4

( I1 - ayz;f(t)14K f(t)a(CLz + -f z)z2



KL-L414*f(t)a(az + p)}

K.10 0
KI0 =9a +41

(9K 9 + P)

The Galerkin procedure may now be used to find the differential equation for the time
function f(t), thereby providing not only the deflection, but also the acceleration as a function of
time. The Galerkin equation will have the form

L ar3  *F w 3 aw a F 8+ w 8aF I 8 2 F

1 1 Lax' $ 7 =BY T + a=y- 8.- 'a O=S

+ p(x,*.t) - P*4 w(x.. 0t1} dxdy = 0 (2 28)

where, for example, the stress functions (F) derived from the radial displacement expression
w(x,+,t) would be those from Equations (2.22) and (Z.23), (Z. 24) and (2.25), or (Z.26) and (2.27).

In order to obtain a solution for Equation (Z. 28), it is first necessary to specify the
external loading conditions, p(x, +, t). One satisfactory relation is the following

p(x,.,t) = ( + PI cos a r(t) (3.29)

where, for example,

'T(t) = e"6t

or

ir(t) = ct

The differential equation for the time function is of tho form

SlA J3 +A J 2 +A 3 J = A4 r(t) -(2.30)

wheri J = f(t)/a and Al,... A 4 are coefficients reflecting the particular characteristics of the
mode shape and load function. As a particular example, we take L = 36 inches, A z 6 inches,
h = .036 inmh, E = 2.9 X 106 psi, v =0. 25 and p = 24.7 X 10.6 lb-sec7 in3 as the properties of
the cylindrical shell. For the mode shape defined in Equation (2. 26) (with X = 0, A= 1. 0 or 0,
and n= 2) and the loading defined as

p(x,+,t) = p 0 (l + B cos Py)e 6 t

the numerical values of the coefficients are as follows:

10j 1



For A= 1: p0 70 psi, B = 4/7 and 8 2.77 X10- 2

Al = 23.4, A 2 = -14.3, A3 = 5.8, A4= 3.72 X10 3

For A=0: p 0 = ?0psi, B = 4/7, and = 2.77 X10" 2

A 1 10.4, A2 = -1.1, A 3 = 0.3. A 4 = 1.65 X10-3

The variation of J an a function of 7(t) is given in Figure 2. 2. Accordingly, the maximum radial
displacements for A= I and A = 0 are respectively

Wmax m 0.0Z2"

w = 0.11"
max

1I



As

.(See Eq. 2. 30
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2.2 Dynamic Response of Circular Plates

2.2. 1 Large Amplitudes

LIST OF SYMBOLS

a radius of circular plate (in.)

D 1 2 (Ih 3  . flexural rigidity of plate (lb in.)

E modulus of elasticity of plate (lb/in2 )

f, F, G functions of time

h thickness of plate (in.)

Jn, I ns Yn, Kn Bessel functions of order n

N = (Nr + Nt)/(l + v) (lb in-I)

N* buckling load of circular plate (lb in- 1 )

Nr, Nt stress resultants in the radial and tangential directions, respectively (lb in" 1 )

p natural frequency of plate (sec"1 )

r, e cylindrical coordinates

-r

a

t time (sec)

tE•-Z : h2 12(l

v velocity (in. sec" 1 )

_V
h2 VE

w lateral deflection of plate (in.)

h

p mass per unit area of plate (lb sec 2 in- 3 )

p41 mass density of plate material (lb sec2 in- 4 ).

2
4 (VZ)Z a biharmonic operator a + " r rL )

It is well known that when the lateral deflections are large the behavior of plates is gov-
erned by two coupled nonlinear partial differential equations usually credited to Yon Kdrmdn. (Z.Z)
The dynamic analogue of these equations has been derived by G. -ermann. (2. 3) Chu and
Hermann(Z. 4) have calculated the fundamental frequencies of rectangular plates at large amplitudes
by an energy procedure.

13



However, a theoretically exact solution of the dynamical equations even for the Case of
free vibrations is nonexistent. The case of forced vibrations bad apparently not been studied at all.
It is to be realised that, owing to the nonlinearity of the equations, the free and forced vibtation
problems cannot be solved separately and superposed, neither can advantage be taken of the concept
of normal modes as is usual in the linear case.

In 1955, Berger(ZL 5) proposed a set of equations which may be termed a simplifiedversion
of the von Kdrmdn system. The merit of his method lies in decoupling the two equations, so that one
of thqm assumes a quasi-linear form and can readily be integrated. He showed further that his equa-
tions yielded solutions remarkably close to those obtained by more elaborate procedures using von
Kdrmdn's equations, at least as regards deflections. Berger, it must be remarked, confined him-
self o the static case.

Nash and Modser( 2 " 6) extended the Berger equations to the dynamic case for rectangular
plates and showed that the free vibration problem can be treated to yield results which are reason-
ably close to the results obtained by Chu and Hermann. (2.4)

In what follows, the dynamical equations ' la Berger are extended to circular plates. By
using an approximate step-by-step procedure, it is shown that not only the free vibration but also the
forced vibration problem may be solved using the elementary concept of normal modes. It is neces-
sary to add that although the basic Berger formulation has a quasi-linear form for the static case, it
is nonlinear for the dynamic case and cannot be solved with comparable ease.

2. 2. 1. 1 Equations of Motion

For the dynamical case, the Berger equations for circular plates may be written in the
form

V4w u2V2w + 2_8 w f(r 8, t)D 9tZ D
Da2 D

+2 h2  
1 2  

+ I 1 + w z (2.31)

in which V4 = (V2 )Z is the biharmonic operator. p is the mass of the plate per unit of area, w is the
Eh3

lateral deflection, u and v the radial and tangential displacements, D a - Z is the flexuralI 2(l - VZ)
rigidity of the plate, h its thickness, E io Lhe elastic modulus, v is Poisson's ratio and f a given
forcing funution.

The radial and tangential strains er and ct may be expressed in terms of the stress result-
ants Nr and Nt as follows

Er (Nr-Nt) 1
(Z. 32)

ct (Nt - YNrO

It follows from (Z.32) and the second of (2.31) that

&Z a - v(Nr+ Nt)=aNO (Z.3 3)

In the Berger formulation, a is constant throughout the plate and thus N, which has the
same dimension as a stress resultant, is also constant throughout the plate. [The simplicity of the
Berger equations apparently derives from the basic assumption that (Nr + Nt) is constant. I

14



From Equations (2. 33) and the second of (2. 31) one finds

NO)~ ou 2 I ew3 u 1v 2S-- =)÷. + + Fo-

In view of the assumed constancy of N with respect to r and 6, one may multiply by r dr d9 and inte-
grate over the plate to find

N ff h2 rdr dO= ff( +) rdrdO + ff± rdrdO +

+ •w 2 + (- ) rdrdO

If the boundary conditions are such that u and v vanish at the boundaries, the first two integrals on the
right-hand side are evanescent and there must follow

2:

Nh2ia 2 a f Z( w Z rdrdO
12D f f ( r I r) *+l

o 0

using (2.33) the first of (2. 31) may be written (2.34)

V4w .Vw+ w f(r, 0t)

D D D t2 D

The problem now reduces to the integration of the system (2.34).

2. 2. 1. 2 Integration Procedure

It is seen from the first of (Z. 34) that N is a function of time alone and that the second of
(2. 34) is effectively nonlinear. The problem of finding the dynamic response of such a system cannot
be solved by superposition of the separate solutions of free vibrations and of the steady state prob-
lem.

A step-by-step integration procedure is here proposed for the integration of the system
(2.34). The assumption is made that N, which is proportional to the sum of the membrane tensions
(Nr + Nt), remains constant at N for a sufficiently short interval of time A. It is evident that the
second of (2. 34) assumes a linear form and may be readily integrated. I is evaluated from the first
of (Z. 34) at the beginning of each time interval. The nonlinear problem is thus reduced to a series of
lineaf problems in time.

Even this simplification, it may be noted, still involves a prodigious amount of labor. For,
since the normal modes of vibration are a functionN, they are a function of time also. Furthermore,
the forcing function f(r, 0, t) has to be expanded in a series of the normal modes appropriate to that
time interval.

Thus, the general procedure is as follows: Starting with the given initial conditions, eval-
uate • from the first of (2. 34). Use this value of N to solve the homogeneous part of the second of
(2.34) and determine the natural frequencies. Expand the forcing function in terms of the normal
modes and determine a particular solution of the second of (2. 34). Use the initial conditions at time
zero to determine the deflection and velocity at the end of the time interval A Use the latter as the
initial condition for the second time interval A. Repeat this procedure up to any desired time t = sA.

(Some of the tediousness of this procedure may be reduced if one ignores the change in the
normal functions at each time interval, using throughout instead the functions appropriate to the initial
interval, but taking account of the change in the natural frequencies at each interval.)

15



Returning now to the second of (2. 34). let

w = R(r)8(0) sinpt (2.35)

where R is a function of r alone and e is a function of 6 alone. On substitution into the homogeneous
part of the second of (2. 34) and dividing out the common factor sin pt there follows

V 4 (RO)"- E VZ(Re) - D e-

which may be written in the form

(V2 ) (V2A (Re) 0 (2.36)

where

G2 Na 2  R + 4ppD) 1/2 )(.7
0. (2.37)

P i+ 4pzpD) 1/2 +

- = -a 2  (2.38)

p = '. (2.39)

Equation (2.36) shows that the complete solution may be obtained by adding together, with
appropriate arbitrary constants. the solutions of the two equations

V z + 2.--) RO=O

and (2.40)

V2 o Re 0

On letting

e = cos(nO - -n) (2.41)

Equations (2.40) yield two ordinary differential equations for the determination of R

2  2 2

drZ r dr (a ar o
d 2 R+ I Ad ( R=0 } 

(.42dr 2  r dr -a2  r

The solutions of (2.42) are, respectively

R=AJn ("r) + CYn("A)

and
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in which Jn and Yn denote Bessel functions of the order n of the first and second kinds, respectively.

In and Kn are the modified Bessel functions of the first and second kinds, and A, B, C. and D are
arbitrary constants. (The notation for the Bessel functions is that used in Reference 2. 7.)

In the case of a solid plate, Yn and Kn are inadmissible because of the singularity at r - 0.
and the general solution of the system (2.42) is thus

R =AnJn (2) 4 Bnln (a'r (2.43)

The general solution of the homogeneous part of the second of (Z. 34) may now be written

w {AnJn (M) + BnIn (a•-)} cosnO+Cnsinn0} {sinpnt+DncosPnt} (Z.44)

The frequency equation and the ratio Bn/An may be obtained from the boundary conditions.

In the case of a simply supported plate, one has

w + = 00 at r =a (2.45)

O2w + Lv +l~w =0

Or2 r Or r"z OJ

and in the case of a clamped plate

w =0
at r = a (2.46)

Ow JGr= 0

Substitution of (2.44) into (2. 45) yields

Bn Jn(Q)
S=" • (Z.,47),

San+(() + 1+00I) =I + ,

and the substitution of (2.44) into (2.46) leads to

Bn Jn(S)
An In(P) (.8

Ja + I (a) In + I(P) I (2.4•)

San(a) +• nP ) 0

The second of (2.47) is the frequency equation for the simply supported plate and the second of (2.48)

for the clamped plate. These equations, together with (2. 38), are sufficient for the determination of
the natural frequencies Pn for given values of F.
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Defining

N

N* = 4 with v = 0. 3. for a simply supported plate (Z.49)
&2

S14.6 for a clamped plate
a2

the frequency equation for the simply supported plate may be written

in+1(0) in+I(0) P2 +o 2

2 z 2 4.2 + (z.50)

v= 0.3

and that for the clamped plate

i3n + l ) + I- 0
-_~c - -- (P)

2_- Q2 = 14.68(

Equations (2. 50) and (2. 51) may be solved for various values of the parameter + and the
values of c and p so derived may be tabulated or graphed as functions of +.

It will be noted from (2. 45) and (2. 46) that the ratio !. =! whether the plate is
Anj In(Pj)

simply supported or clamped.

Letting

In (= ) la (2 I Rnj (2.52)a n(Psj)

one may write the deflection function (2.44), corresponding to the (nj)th frequency as follows

Wnj= Rnj {Anj cosnO + Bnj minn8 } {Sinpnjt + Dnj coO Pnjt} (2.53)

in which Anj. Bnj and Da- are new arbitrary constants, to be determined from the initial conditions.
It may be seen that (2. 531 may be written in the form

wnj = Rnj {Anj(t) cos n8 + Bnj(t) sinnO} (2.54)

where

Anj(t) a Anj {sinpnjt + Dnj cos pnjt} (

Bnj(t) wBnj sCin pnjt + Dnj coopnjt} 2.5

Any arbitrary deflection satisfying the boundary conditions, and therefore the solution of the homo-
geneous part of the first of (2.34) appears finally in the form

00 0O Go GO

wc= E E RnjAnj(t)cosnS+ E Z RnjBnj(t)sinn (Z.56)
n=Ojzl n=lj-l

where the superscript "c" on the left denotes "complementary function."
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2.2. 1. 3 Forced Vibration

In seeking a particular solution of the first of (2. 34), it will be supposed that the forcing
function f(r, 0, t) can be expanded in terms of the principal modes in the form

f(r, 9, t) = F(t)••ZRnj(rnj cos no + snj sinno) (2.57)
n j

A particular solution of (2. 34) is sought in the form

wp .EERnj {anj(t)cosno + bnj(t) sinnG} (2.58)
n jI

in which anj and bnj are undetermined time functions.

Inasmuch as Rnj cosnO and Rnj sinnO satisfy the homogeneous part of the first of (Z. 34)
there must follow

/ cosne ( co.n 2 / o
v Rni - Nv R. 1 = pcjP n (2.59)

S inn sinn/ / D sinno

Substituting (2. 58) into the first of (2. 34) and making use of (2. 59) one finds

2n+~jn F(t)fj(.0

z F(t)s~ i (.0
bnj + pnjbnj = p

Let the particular solutions of these equations be

anj = gnjG(t) (Z.61)

bnj = hnjG(t) I

From (2. 58) and (2.61), one gets

wP = ER'j (gn cos no + hnj sinnO)G(t) (Z.62)
n j

The complete solution of the first of (2. 34) may now be obtained by adding (2. 56) and (2.62)
OD CD OD Co

w=wC+wP= E Z1 Rnj[Anj(t) + gnjG(t)] cosno + E E Rnj[Bnj(t)+hnjG(t)] sinno
n0j n=1 j 1

(2.63)

Let the initial conditions be

w=X(r)p0) I at t =0
*: =x(r)g•(o) J

These can always be expanded in Fourier-Bessel series of the form

w = E E RnjHnjcoSnO + Z M lnjLnjsinnO
j=1n=O j~ln1lj = n =0 J= n=I(Z. 64)

00OD Co CD G

E E RnjMnjcosno+ 2; E RnjNnjsinn }
j=l nfO j=1 nfO
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where

%Hnj = 2 1 ar(6)RaJ cos0n rdrd0

2w a
XLnj( = " +r)*(O)Rn~jsin nOrdrd8 n 0O

(2.65)

)Mnj ( 1 x(r)hL(O)Rnj con nO rdrdO

2w a
).Nnij = x(r)IL(O)RnjsinnOrdrdO n 0 0

in which

X- = w• Rnjr dr n= 0

a
=wf Rnjrdr n• 0

0

From (2. 63) and (2. 64). using (Z. 65), one finds

w = 2• 2: RnjUnjcosnO + E- 2: RnjWnjsinnO
n=Oj=l n j1(.66)

4 n = 2=M RnjVnjcosnG+ E: 2. RnjZnjsinn }
n~Oj=l n~lj1

in which

U = {Mnj- gnjG(0)I sinPnjt + {Hnj- gnjG(O)l cosPnjt + gnjG(t)
Unj Pnj

V.j = {EM. - gjG(0) I co-p .t - p.j 'Hnj - gnjG(0)l sip *nt + gn.6(t)

"wnj =p_ Il{nj - hnjG(O)f Iinpnjt + Lnj - hnjG(O)l cosoPjt + hnjG(t)
n~j

Znj = Nnj.- h.jG(0)} cosp.jt" Pnj {Lnj- hnjG(0) sin Pnjt + hn .(t)

The deflection is now completely known and the acceleration may also be determined. It
is to be remembered, however, that this solution is valid only for the time integral (t - 7) during
which the parameter R is supposed to remain constant. In Equation (2. 66), therefore, the time vari-
able must be (t - 7) instead of t. The parameter N is determined by the first of Equations (2. 34)with
t taken at the beginning of the time interval (t - r). Thus

Zir

J_6D Jj 2 + 1 .(OW)] rdrdO (2.67)

0 0 t=
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Using (2. 63) and (2. 66) and (2. 50) and 2. 51), Equation (2. 67) may be written

a

E Ei __.R- kHojHok .rdr +hZ f j=l k=l
0

, RkjRkldHnjHnk + jLn rdr +
0 nO j=l k=l

+ ' 00 OD GO ndr (2kHnjnk)
+ Z E nZRcjRnk(HnjHnk+ LnjLnk) (2.68)
n1l j=l k=r

0

in which %j dr

The integrals in (2.68) cannot, unfortunately, be readily obtained in closed form, and
recourse must be had to numerical integration.

2. 2.1.4 Summary of Integration Procedure

In numerical integration it is advantageous to use nondimensional quantities. These will be
distinguished by placing a bar over the corresponding symbols. Let

W Wh

- th
"t = a V Zlvl -72)p*

where p* is the mass density of material of the plate

Sr
r = -a

Let s denote the number of intervals A from time zero. Then the deflections and velocities at the end
of the sth interval are given by

OD) OD 00 GOD

Ws= E E RnjUnj coosn&+ E E RnjsWnxJ.s~inn 0j l n=O j=I n=l

0 >1 (2.69)
OD CD0 GO 00

ws = E Rnj Vnj, coosnO+ E E Rnjs Znjs sin n0j=l n=0 j=I n=l

The Rnj are defined by Equation (2. 52) and:
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U- a {Mnja - gIA.1 (a -1)1} A~n (re&A) +

nj*a

+ {H1n - gn1 1 G[A(s M )} cooa(pn3 ,&) + sg1 5 G[ As)

Vnil { Mnj gnj,6(a(* 1)] } Coos(Pnj.) -

-Pn*is Hni - gni. GI A(@ - 1)] } @in (pnjA) + gnjs6h,&J

a >1 (2.70)

-' j -N n.6 A( - 141 *in (p~j.4)1

+ { Lj -,jC[~ - 1)1} cooa(Pj,&) + hnj3 G(As]

znil ' {Nnj, - h G,&[(s( - M)} coo (PnjA) -

-Pnj, {Lnj1 - -j[,( 1)1} llfl(PnjA) + Hnj,6f A.)

and

H-jk= E Unk ~Rnk 1 Rnj fdf/ R~j 8 dF, n >0. s >

E k= ( nks -1 k -1 j i Rr TOP, n > 0, a >Z

(2.71)

'-'il = E Wn. 1 Rnk. RnjTdF/JR~jT~dF.n >0, s >2

Ni= j( Ynk Rk Rlli TdF/( R~ WEfn>O0,> Z

The natural frequenciesI are given by

Pja= Onjoi1 j s 1> (2. 72)



Piz as2 = 12 %=l 1 PJ. %~k. HojI Hoks d.

+ 6 f n M k1 Rhj, Rihks (HnjsHnk s + InjsLnnk.) T 0. d>

0 n j=lk=l r

with

% dRo3

Some of the above relations may be simplified by noting that if A is taken sufficiently small

Rnj,. J R~j

Rnks- Rnj TdM0 k j

Equations (Z. 71) then become

Hnj. mUnj. n_>O0

MnJs VnJs n 1 n

s n> 2 (2.74)

Ljs Wnj. n>O

Nzjs M Ynjs n > 0

Equation (2. 73) simplifies to

2Z- Q=2 = EokHojk Hoks + 6nEE zEunk(Hnk j Hnks + LnJ. Inks) +
njk n j k

+ 6 l n 2 (H.H +L L)
nj k J nj k -nJs nk

where

1

"Cojk = f Roj Rok UdF
0

4njk = 0 / j PhIUP(.6

1 
d

njkf0 %Jo Ro kd. (2.76)

0l k RnJ° nk° T

If the right-hand side of (2. 75) is evaluated for any value of s, then setting
P2 - 2 = 4. 2 + for simply supported plate

= 14.68 4 for clamped plate
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one may determine + and thereby the values of nnj and Pnj if these have been tabulated for various
values of +. (See note under Equation (2. 51). 1 Equation (1. 72) may then be used to determine the
nondimensional frequencies.

2. 2. 1. 5 Numerical Example

The response of a circular plate to a loading pulse will be investigated by the method
described on the preceding page.

A blast of short duration is best treated as an impulse. Assuming that the blast is deliv-
ered uniformly over the area of the plate, let

Iwa2 ( f(t) dt = I

c being the time at which the pulse decays to zero.

By the momentum principle, the uniform starting velocity is

Vo (2. 77)

where M is the total mass of the plate.

The plate under consideration has the following geometric and material properties

a= 6", E= 30 X106psi, p*= 7.34X10" 4 1b sec 2 in-4

Thus,

a - 2(1 - V2 )PC = 0.45 sec in-I

The initial velocity vs, calculated from the characteristics of the charge (used in an experiment, the
details of which are omitted here) and relation (2. 77) above gives an estimated initial velocity of
893 in. sece-. Thus, the nondimensional initial velocity is

Vo = 893 X 0.45 M 400

The response of the plate will be analyzed on the assumption that the plate receives a uniform velocity
of 400 while at rest.

The parameter

h E =a 12(1- v) 61.6

Thus

T= 61.6t

This gives the relation between nondimensional time T and true time t. The nondimensional time
interval A will be taken as 0. 0616. This corresponds to a true time interval of one millisecond.

The basic equations given in Section 2. 2. 1. 4 can be simplified considerably because of
axial symmetry. In what follows, the bars over the nondimensional quantities will be dropped. No
confusion can arise as all quantities henceforth are nondimensional.
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Equations (Z. 69) become

We = RoJl Uoj* 1
= > 1 (2. 78)• = • oj

j=l oIV,

From Equations (2. 70). (Z. 71) and (Z. 74)

= MoJe.- sin (poJs IA) + Hojs co A)

N. 0. M -1 1( 9

MOJ = 0°j -1 j -Co1 (P-j. A) PJs- H0 j- sin (poj. I 2

The initial conditions give

Hoj= 0

= RojI rdr rdr

0 A l

where

Jo0 (31 )Roj =Jo(oLjl r) -oO~ -f)
R03  r I°(aJ l r)

with
aj 2 =.222 for j = I

= 5.452 for j = 2

p =1

Thus

M.Oi
U =- sin (PojA)

Voj. MojI coo (PojA)

From Equation (2. 72)

Pojs : *oj Pojs > (Z. 81)

Using j 1, 2 only, Equation (2. 73) becomes

I (d° 0 \ 2 i dR0 | dR0 21
-2._a = 12H H J olo d rdr+4H H+ d4 rdr +

2 0l H02. f dr dr

0 0Z

+ 12 Hoz( (I ij1 rdr s >1 (2.82)

Assuming that the plate is simply supported

2 .(2= 4. 2•

Thus, *. is known, and a. and p* may be read from charts already prepared.
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Z. 2. 2 Plastic Collapse

LIST OF SYMBOLS

v initial velocity given to membrane, a constant

U radial velocity of flat portion of membrane, positive outward

R radius of flit portion of membrane

R radial velocity of bending wave

a initial radius of membrane

h initial thickness of membrane

p mass density of membrane material

t time

r radius of position of any particle in the flat portion of membrane at any time

ro initial radius corresponding to r

H thickness of membrane at any time

wr radial stress

we circumferential stress

yield stress in tension

Cr' Ce natural (logarithmic) strains in the radial and circumferential directions

Z distance of central flat portion from initial plane of the diaphragm

V Poisson's ratio

E modulus of elasticity

p = R/a

IL = U/v

I = H/b

cz = W/P

t = vt/a = Z/a

6 = 4r/pv 2

K = (4o-/pvZ)oi(l - v)/E] l

In investigating this problem it was discovered that there are certain existing solutions to
corresponding problems in underwater shock which have been satisfactorily verified experimentally.
While the problems of blast effects in air or of soft radiation are by no means the same as the effects
of blast loads underwater, they are sufficiently similar to warrant the supposition that, as a first
approximation, the two problems may be studied by identical procedures.
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The solution to the plastic collapse of a diaphragm proposed by Hudson(Z. 8), and a similar
solution by Frederick( 2 ' 9), refer specifically to underwater shock. It is proposed now to use the
results of these analyses, particularly that by Hudson. to predict the collapse of plates due to blast
effects in air. These predictions will then be subjected to experimental checks under the test pro-
gram at present being formulated. If it is found that the discrepancies between theoretical and
experimental results are sufficiently serious, a fresh theoretical analysis will then be undertaken. It
is believed that this approach will lead to the greatest economy of effort in the overall program.

2. 2. 2. 1 Summary of the Hudson Approach

The problem attacked by Hudson is the damage done by underwater explosions to thin metal
circular diaphragms, air backed, and held rigilily at the peripheries. The material of the diaphragm
is supposed to be rigid-perfectly plastic. Although Hudson has also given an approximate solution for
a work-hardening material, the primary difference noted is that in the work-hardening solution the
apex of the cone (the final shape assumed by the diaphragm) is rounded off. whereas in the perfectly
plastic material the apex is a point. For the present purposes, it appears sufficient to fix attention
on the solution for the rigid-perfectly plastic material.

The shape assumed by the diaphragm at any time t < ts, where ts is the total time for
deflection or "swing time. " is that of a truncated cone as shown in Figure 2.3. The flat central
region travels with a constant speed v normal to its plane, decreasing in radius with its motion, the
diaphragm finally assuming the shape of a cone with a zero thickness at the apex.

While an explicit form of the solution of the equations of motion is not given even for the
highly idealized model proposed by Hudson. certain special cases can be solved and information
gleaned regarding the following:

(1) The radius R of the bending wave (see Fig. 2.3) as a function of time

(2) The diaphragm profile at each instant

(3) The thickness distribution

(4) Displacement-time curves of particles in diaphragm

(5) Stress and strain distributions

(6) The centep deflection as a function of v

(7) The total time for the deformation to take place

The solutions given by Hudson are summarized below.

2. 2. 2. 2 An Elementary Approximation to the Solution

When the acceleration of the material in the flat central portion is negligibly small through-
out the motion, i.e., U is a constant, the solution is as follows

U = v 2 /2c (a)

R = a - ct (b)

R (v/c)2  (2.83)H ~)(c)

Z =(a- R) (d)

c

The thickness distribution in the deformed diaphragm given by (2. 83 c) shows a dimpling
tendency at the center. In fact, at the last moment, the thickness becomes zero at the center. How-
ever, as the variation of the thickness with R is so rapid near R = 0. the tiny pinhole may not be very
apparent experimentally.
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Equation (Z. 83 d) shows that the diaphragm assumes a conical shape whose center deflec-
tion is proportional to the initial velocity v.

The total time of deflection ts is given by

to = a/c (2.84)

2. 2. 2. 3 The Exact Solution for a Rigid-Perfectly Plastic Material

2 (XI - l)/(xl- xz) (xz- l)/(xZ- XI)

R ( 64 = -I)-x(a
a ( 5;x I K (a)Sa-/(xz)IZx_-xl)

-Z(xl)/( -x) z- -Z(xz)/(x x
H RxI

- ( 2 3) x + 0 
(b ) (2 .8 6)

t t b exlot t 2ixt

-- = = 12 Pi(p) dw (-c)ai f(W-.Xl)( xZ~x)

where Xl, x2 are the smaller and larger (positive) roots respectively of the quadratic equation

x7 - (76 - 3) x + Z= 0 (2.86)

It is to be noted that the initial conditions are

P = rl = 1, p = K when t = 0

Equation (2. 85 c) is not integrable in terms of elementary munctions.

For positive values of 6, which are the only ones of physical interest, the roots of (Z. 86)
33

occur in pairs of positive values for- + N -6--< co and as pairs of negative values for0 0< 6 <-- 472 -2
(a very small range). For intermediate values of 6, the roots are complex. Hudson confines himself

to a consideration of values of 6 Z + N'4. At the lower limit of this range, corresponding to very

large v, or small avalues, we have x1 = x2 = %rZ7. As 6 becomes very large, 472 > xl- 0 and

%r2< x -.. o.

A case of considerable interest arises when rZ coincides with one of the roots of (2. 86).

From (Z. 85), it is seen that the only possibility is for •Z itself to be constant and equal to
I?. It can then be shown that either 0 _. V = K ::11, or R = - Ke__- 1. The first case only is admissible,

since the second precludes i = K initially. Thus, we have

and

6>3
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The solution is then as follows

Rua- -vt-a- Z----Z (a)

mhe(,•) 4 (KZ)/(. _ 2)(.

a) (2.87)

U #Kv (c)

6 24E- 0 + 3KZ + 2 > 3 (d)
vz Ziz --

For r = 1, 6 = 3 and v = (2/14)c, and the deformed diaphragm is cylindrical, i.e., it ruptures com-
pletely.

For other allowed values of K (=I), this solution is quite similar to the elementary approx-
imation presented earlier, even quantitatively, provided 6 is large. For it follows then

K N 1/61/2 = v/Zc<<l, (6>> 3)

and (2. 87) reduces to (2. 83).

Another case of interest arises if K has any desired positive value within reason and 6 is
very large. Then xI is small and xz is large. Assume that KZ/xz << 1, as is p2 /xZ (since pZ varies
from Kz to xl). Under these simplifying conditions, it is possible to derive an approximate integral
of (Z. 85 c). It is then found that

Xl, a1/6, x 2 M Z6 >> I

Then providing 6 is large enough

7 = • = ZUvI(vZ - U2 ) [1 - (R/a)] (a)
a a

H (v/c) (b) (2.88)

- I: +(41cz . a)-6c/) (c)
v Zc \ V2 va 1

It may be shown that this approximation is uniform over the range of U/v from x to v/Zc, and the
range of R/a from 1 to 0; but the nearer K is to I the larger 6 must be. If K = 0, which is the case of
a material which has strictly no elastic strain range, the deflected shape of the diaphragm described
by (Z. 88 a) is conical near the center with a central deflection the same as that given by the elemen-
tary theory under 2. 2. 2. 2.

Z. Z. Z. 4. General Remarks

It may be noted that the modulus of elasticity E enters into the definition of K. This is
because, although the elastic phase of the material is neglected in the specification of the deforma-
tions. an estimate has been made of the initial conditions at the end of the elastic range. The time
at which elastic phase is completed is of the order of magnitude of 3% of to for some steels. Thus,
it is generally immaterial whether time is reckoned from the end of the elastic strain range or
before it.

Whether the above analysis, developed with specific reference to diaphragms, would apply
to plates of the proportions of interest in the present research program can only be determined by
careful experimentation and photographic records of the deformation.
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Some additional results which may be of value in checking the theory are

Tr = fr =

Cr = co = log (r/ro) (2.89)

CH f log H/h
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3. NUMERICAL ANALYSIS - CYLINDRICAL SHELLS (LINEAR-ELASTIC, SMALL DEFLECTIONS)

The computations utilized the following geometries and materials for the cylindrical models
used in the experimental investigation

a =6" 6v = 1/3

L = 36" E = 2.9X10 7 (psi)

h = .036" p = 7.36 X10" 4 (lb'sec)

The analyses began with determining the free vibration circular frequency utilizing the values
obtained for the frequency factor (4) in Equation (1. 13) for the appropriate values of K i see Eqs.
(2. 9), (Z. 16) or (Z. 17)] in the relationship

Wmn = (12. 3%Pmn)1/2 X 104 (3.1)

The variation of the circular frequency with the end-closure stiffness (R.) for various values of m and
n are shown in Figure 3. 20.

The computations in all cases were directed toward obtaining pertinent radial displace-
ments from the relation

w(x, 4', t) = I Wmn(X, 4,) qmn(t) (3.2)

Values for q _(t) in Equation (3. 1) were acquired from Equation (I. 27) [ or in finite difference form,
Eq. (I. 28)], T'ich entailed obtaining the generalized force and generalized mass.

3. 1 Simply Supported End-Closures

For the generalized force ( see Eq. (I. 27); Appendix I], taking the loading as being uni-
formly distributed along the length of the shell, we have

Qmn(t) = a P(4O, t) fL wmn(x.4,)dx] d-O (3.3)

From Equation (2. 15)

ZLaC 4 f
Qmnlt) = n P(0, t) cos rr~d+ (n = 1, 3, 5 .... ( 3.4)

0

Taking into consideration the loading symmetry and using cylinder surface increments of + 22. 5",
Equation (3. 4) becomes

4LaC4  P0() osmL 5
Qmn(t) Po(t) cos mnd + f PfI+ 11.25 (t) cos md4

0 fI0 ]
+ 18 Pis04) coo mm+4] (3.5)168.75 Psl)cs•1.5
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The values of P (t) for time increments of 0. 1 misc were obtained from load profiles similar to
those shown in figure I. 10, Appendix I. The time variation of Qmn(t), as acquired from Equation
(3. 5) for P, x 33 psi and t.÷ z i meec, is shown in Figure 3. 1.

From Equation (2. 1S) [and Eqs. (Z. 11)1, the expression for the generalized mass (see
Eq. (I. 27), Appendix 11 becomes

Mm LhpwaC4 ~ (K)Z +(K 3nT)2 36Mm 12KK 3.6)

The frequencies and the corresponding values of the terms within the brackets of Equation (3. 6) are
given in Table 3. 1.

In each of the computations, only the lowest of three, real frequencies obtained from
Equation (I. 13) was used. This frequency was associated with the response where the radial dis-
placement (w) was predominant. An indication of the contributions made by the longitudinal (u) and
tangential (v) displacements may be found in Table 3. 1 where sample values of K2 /Kl (reflecting the
tangential displacements) and K 3 nw/K I L (reflecting the longitudinal displacements) are given. Here,
it is seen that, although these values are greater than unity, they are at the same time associated
with much higher frequencies. Since the value of the generalized mass is increased [ Eq. (3.6)] and
the larger frequencies dictate smaller values of At in Equation (I. 28), the net result is a drastic
decrease in the values of qmn(t). This clearly shows that the contribution of the longitudinal and
tangential displacements is quite negligible when compared with that of the radial displacement.

The ratio of the generalized force to the generalized mass appearing in Equations (I. 27)
and (L 28) is, in accordance with Equations (3. 5) and (3. 6)

Qmn(t) 4 Z4 P+(t)cosm~d (m 2,3....)
Mmn KpwC (K)z Kn)2 n =1,3.5.) (3.7)

where, for the particular shell properties previously listed

4 1.53 X 10 6
S n

nhpw n

From Equation (I. 28), the variations of qmn(t) with time are obtained for particular values of PI and
t4. These are shown in Figures 3.2 through 3. 13. As a final step, Equation (3. 2) is utilized to
obtain the value of the radial displacement for each point on the cylinder's surface as defined by x
and* . In Figures 3. 2 through 3. 13 are shown the variation of w(x, 0, t) with time for the point at
x = LIZ and+ = 0". (See also Table 3.2)

3.2• Fixed End-Closures

For cylinders with fixed boundary conditions, the expression for the generalized force
[see Eqs. (2. 13) and (3. 3)1 for a load uniformly distributed along the length of the shell is

Qmn(t) = C AK() W P(*. t) cos m+d+ (3.8)

where

A(K) = r,(cosh K + cos K - 2) + r 3 (sin K - sinh K)

r~i = slnhK - coshK+ sin +cos
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TABLE 3.2. COMPUTED MAXIMUM RADIAL DISPLACEMENTS (COLUMNS A) AND
CORRESPONDING TIME OF OCCURENCE (COLUMNS B) AT x = L/2. 0*

FOR CYLINDERS WITH SIMPLY-SUPPORTED END-CLOSURES

Columns A Columns BP1  t (1) (2) (1) (2) I (3)

(psi) (msec) (inches) (inches) (msec) (msec) lb -inz.msec

17 0.75 .042 .035 0.9 0.85 6.3
17 2.5 .150 .085 1.4 1.4 21.2
23 1.0 .078 .065 0.9 0.9 11.5
25 2.0 .114 .092 1.3 1.3 25
i5 3.0 .152 .124 1.4 1.4 37.5
33 1.0 .084 .067 1.0 1.0 16.5
35 2.0 .164 .128 1.4 1.3 35.0
37 1.5 .132 .107 1.3 1.3 27.7
37 3.0 .212 .174 1.3 1.3 55.5
60 1.0 .167 .133 1.0 1.0 30
60 2.0 .284 .184 1.4 1.4 60
60 3.0 325 .26 1.3 1.2 90

(1) Neglecting contributions of u & v in Mmn

(2) Including contributions of u & v in Mmn
(3) PI X 4/Z
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r"? = sin it + sinh

r 3 = cosh - coso

It n'w

n = l1/2(An+ 1) (n a 1.2,3 ... )

It is of interest to note that the integral term in Equation (3.8) is identical to that appearing in Equa-
tion (3. 4). Thus, the values of the generalized force for the simple and fixed support conditions are
proportional. The values of the terms in Equation (3.8) are given in Table 3. 3.

For the generalized mass, in a first order approximation, the longitudinal and tangential
components of the displacement were neglected I see Eq. (I. 27), Appendix I]. so that

L 2w
Mmn = pahf f [wmnx,(x})I' d.#

0 0

or

M.. = paw( 2 cti() (3.9)

where

alW)= r-" sinh . cosh K + K - cosh K sin

3 2
- . cosh 2K - 2 sinh K. sin K -co. 21)

+ 1"( sinh K cosh K - cosh K sin i)

The appropriate values of o,(r) are also given in Table 3.3

From Equations (3. 8) and (3.9), we acquire the ratio necessary for the solution of Equa-
tion (1. 28)

Qmn(t) 1" (m = 2-,3 .... )mn L P(K) fP(t) coo mmd3 (3.10)
Mmn phwC Ol(K) (n ; 1,3,5 ,...)

where the summation is identical to the terms within the brackets in Equation (3. 5). The variation
of qmn(t) with time, obtained by utilizing Equation (3. 10) in Equation (L 28) are shown in Figures
3.14 through 3. 19. The variation of the radial displacement with time (also shown in Figs. 3.14
through 3. 19) are obtained from Equation (3. 2), or. for the fixed boundary conditions

w(x,*,t) = , • 3 ( co[r i - coshl) + r, (.inhI - .ini)] co. mdq(t)
(3. 12)

Table 3.4 contains the maximum radial displacement and corresponding times.

In order to determine the contributions of the longitudinal (u) and tangential (v) components
of displacements, we use the expression for generalized mass appearing in Equation (I. 27) and from
Equations (2. 11) and (2. 12) obtain
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TABLE 3.3. FREQUENCIES AND RELATED QUANTITIES FOR
CYLINDRICAL SHELLS WITH FIXED END-CLOSURES

Wmn finn K 2(4) K 3 1 (4)

I I 1.5 50,000 7,960 220 25,600 11,170 -. 9684 .4525 51895
1 2 2.5(3) 1.0 25X10 6  0 -. 8266 .6167
1 3 3.5 56,310 8,960 120,000 9.7X1011 264.8X10 1 1 -. 6338 .6172
2 1 1.5 4,640 740 220 25,600 11,170 .5022 .2007 32506
2 2 2.5(3) 13,660 2,180 1.0 25 x 106 0
2 3 3.5 79,730 12,700 120,000 9.7X101 1  264.8 X 10 1 1

3 1 1.5 2,040 325 220 25,600 11,170 .3335 .0874 28530
3 2 Z.5(3) 6,010 960 1.0 25 X 106 0
3 3 3.5 12,050 1,920 120,000 9.7X10 1 1  264.8 X 10 1 1

(1) See Eq. 3.8
(2) See Eq. 3. 9
(3) Antisymmetrical
(4) See Eq. 3. 13

( 5 ) a1 (e ) [1 + ( K+] • ( K) ( E I L 2
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TABLE 3.4. COMPUTED MAXIMUM RADIAL DISPLACEMENTS (COLUMNS A) AND
CORRESPONDING TIME OF OCCURENCE (COLUMNS B) AT x - L/2, = 0"

FOR CYLINDERS WITH FIXED END-CLOSURES

Columns A Columns B
I1 t+ (I) (2) () (a) I (3)

(Put) (macc) (inches) (inches) (msec) (mscc) (lb -in 2 -M@.C)

17 0.75 .030 .025 0.49 0.47 6.3
17 2 5 .039 .035 0.54 O.54 21.2
33 1.0 .051 .040 0.46 0.46 16.5
35 2.0 .068 .057 0.60 0.53 17.537 1.5 .049 .040 0.43 0.48 27.760 2.0 .093 .076 o.S3 0.53 60

(1) Neglecting contributions of u and v in Mmn
(2) Including contributions of u and v in M.,

(3) (Pi)(t+)

2
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"Mm LhpawCZ= K [1H)] + (K JIL (3.13)

whe re

azw = r Binh , cosh x + cosh g gin K)- r 2 r 3 (cosh Zr + coB ZK)

+ r B(sinh . cosh K + K - cosh K sinK)

Accordingly. Equation (3. 10) is replaced by

Qmn(t) r'1 P(K P +(t) cos m od # (3. 14)
Mmn phwnC 

)Z<_/] KK1
Gl(K) I, + aZ(K) ( KiL

The corresponding values for qmn(t) obtained from Equation (I. Z8) and w(t) at x = L/2 and + 0' are
given in Figures 3. 14 through 3. 19.

3. 3 Elastic End-Closures

For cylinders with flexible, flat-plate, end-closures, we take as a first order approxima-
tion the following relation for the moment

_• =•+ •(3.15)
D d r

where the bar denotes properties associated with the plate. The solution of Equation (3. 15) for + is

D r

Setting the value of + at ? = I equal to one radian, the value of stiffness S is found by

s = B(l + (for +l = 1 radian)

If the flat plate has the same thickness as the cylinder wall and is made of the same material as the
shell, then using the specific dimensional and materials values previously listed, we have for this
particular case

S = Z8. Z

and thus

R SL 18
D

For a load uniformly distributed along the length of the shell, the expression for the gener-
alised mass is

50



I
LaC f02w

Qmn(t) Lac P(l, R) P(#,t) coo m~d+ (3.16)

1 0

where

P•2, R) z Z KZ I sin r(cosh K - 1) + sinh .(l - coo g) + Rx(cosh cos - I)

+ R2 [ sin x(cosh r - 1) - sinh K(l - com o)i}

r'l = 2?i sin K + R(K + R)(sinh K - cosh r + sin r + coo K)

=ZK sinK + R(K + R)r v [See Eq. (3.8)]
1

r"2= sin K + sinh K

r3 = cosh K - cosK

and x are the values commensurate with the value of R obtained from Figure 2. 1. These values of K
and the circular frequencies obtained from Figure 3. 20 are given in Table 3. 5.

For the generalised mass, neglecting the contributions of the longitudinal and transverse
components of displacements, we have

Mmn = LhpawC Zi(Kg, R) (3.17)(r #1l2

where

nl(oc, R) = Z r 2 (sinh K - sin K) + Zo 4 [ 3 sinh K sin K(cosh K sin x - sinh K cos K)

- R 3 (sinh K - sin K + K3R[ 4 minh K sin r(cosh K coo K - 1)- Rr 1

+ K? R[(cosh r coo ic - 1)(sinh K cos K - cosh K sin K)+ 8 sinhh sin K (sinh K coN K

+ cosh K Sin K) + zr 2 r 3 ] + KR 3 [ Rr•+ 4 (co3 h K cog K - 1)2-

+ 3R~cosh K cos r - l)(cosh K sin K + sinh K coo r)

From Equations (3. 16) and (3. 17), the necessary ratio for the solution of Equation (I. 28) is as
follows

Qtun(t) r= f P((coKR) 3.g

Mmn phwC al(r, R) Lf P,) coo mld+ (3.18)

where the summation is identical to the terms within the brackets in Equation (3. 5). The variation
of w(x,#, t) at x = L/Z, and = 0" with time is shown in Figures 3. 21 through 3. 23.



TABLE 3.5. FREQUENCIES AND RELATED QUANTITIES FOR
CYLINDERS WITH LA.ASTIC END-CLOSURES

U~mn •°mn L,(K. R)(2)

m K (rad/sec) A(K, R)01 )

2 1 1.41w 4,000 12,200 56.49 X 10 6

3 1 1.41w 2,100 12,200 56.49 X 106

(1) See Equation (3.16) (for R = 8)
(2) See Equation (3.17)(for R 8)
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4. DISCUSSION

The utility of an analytical procedure is best measured in terms of its ability to yield
meaningful and correlative quantities for a wide range of variables with a minimum of computational
effort. The adequacy of these computed quantities can be ascertained only in a direct comparison
with reliable, equivalent experimental evidence. If the results obtained by a comparatively simple
analytical method agree favorably with the available experimental data and if the results cover the
range of interest for the problem at hand, there then appears to be little reason (at least from a
practical viewpoint) for employing another more rigorous and therefore more computationally com-
plex solution.

The linear-elastic method for cylindrical shells developed in Section 2. 1. 1 and used in the
numerical analysis in Section 3 appears to yield significant results (over a wide range of peak over-
pressures and positive phase durations) that agree favorably with the experimental data. There is,
at present, no apparent or justifiable reason for suggesting the use of other available but neverthe-
less more complex analytical procedures (such as that developed ini Section 2. 1. 2).

One method of compactly presenting the numerical results obtained in the preceding sec-
tion is to chart the variation of the maximum radial displacement (in this case, at x = L/2, and

S0") with the two characteristics which distinguish each particular blast loading, namely, the
peak incident overpressure (PI) and the companion positive phase duration (t÷). In Figure 4. 1, we
have taken the impulse (defined as PI X t4 - 2) for the ordinate axis and the maximum radial deflec-
tion for the abscissa. On one hand, the bands for each type of cylinder end-closure arise from
taking the generalized mass as a function of only the radial component of displacement and on the
other including all three displacement components (u, v and w) in computing Mmn. In Table 4. 1 are
comparisons of high-speed camera data obtained for specific models with the computational results
as represented in Tables 3.2 and 3.4 or Figure 4. 1.

The close agreement between the experimental and analytical results is indeed encour-
aging particularly in view of some of the expected deviations in the peak incident overpressure and
positive phase duration that arise from minor differences in charge size and shape, differences in
atmospheric conditions and local changes at ground zero resulting from repeated shots. Moreover.
there are the assumptions used in developing the load spectrums and the purely analytical approxi-
mations (see Appendix I) and some of the normal uncertainties associated with the high speed photog-
rapjiy data (see Appendix III) and the models' dimensional and materials properties. All these fac-
tors undoubtedly contribute to the development of a range of displacement values rather than a
precise and specific value for each given set of conditions. The encouraging aspect is that the
numerical procedure used in the preceding section, which is comparatively simple and straight-
forward, does give values that are compatible with the experimental evidence and, therefore, of
direct practical importance.
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TABLE 4. 1. COMPARISON OF EXPERIMENTAL (HIGH-SPEED PHOTOGRAPHY)
AND COMPUTED (LINEAR-.ELASTIC, SMALL DEFLECTION THEORY)

RADIAL DISPLACEMENTS FOR CYLINDRICALSHELLS

! Computed Expe rimental(9

Model Shot Boundary PI t+ (PI X t4()/2 Wd () (6)
No. No. Restraint (psi) (msec) (lb - inz. msec) (inches) (msec) (inches) (msec)

CA3 DI Fixed 15(2) 6.3 (4) 47 .064 - .078 (7) - .04 0.7
CA3 D2 " 19 (2) 5.5(4) 41 .060 - .072 (7) - .07 1.5
CA3 D3 " 42(2) 3.8(4) 80 .098- .118 (7) - .12 0.8
CB2 GI s.s. 20 (1) 2.4(3) 24 .084- .116 (7) 1.4(10) .12 1.3
CB2 G2 " 16(1) 2.3(3) 19 .072- .095(7) 1.4(10) .11 1.5
CB2 G3 " 17(1) 2.5(3) 21.5 .085- .105(8) 1.4(8) .11 1.4
CB2 G4 " 17 (2) 2.9(3) 24.5 .088 - .118(7) 1.4(10) .13 1.3
CB2 HI " 25 (2) 5.1(3) 64 .194- .248 (7) - .20 2.0
CB3 H3 " 23(1) 4.5(3) 52 .164-.216(7) - 15 1.5
CB3 H4 " 53(1) 3.9(3) 100 .284- .366(8) 1.4(8) .30 2.0

(1) From Table Il. 1, Appendix III
(2) From Figure I1. 3, Appendix III

S(3) From Table I1. 2, Appendix III
(4) Computed
(5) Maximum (inward) radial displacement at x = L/2, ' =
(6) Time of occurrence of displacement
(7) From Figure 4. 1
(8) From Table 3. 2 or computed
(9) From Figures 111. 4 through I1. 13, Appendix III

(10) L•stimates
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APPENDIX I

METHODS OF ANALYSIS (LINEAR-ELASTIC,
SMALL DEFLECTION THEORY)

LIST OF SYMBOLS

A, B, C Constant coefficients (maximum amplitudes of component vibration@)

Eh3

D
12(1 - v

E Elastic modulus

2pa(l - V2)
F 

E

K EhK = 1 o z

L . Cylinder length

M Bending moment ofi section

Mmn Generalized mass I

N Stress resultant

Q Generalized force

rn.

T Kinetic energy

V Potential (strain) energy

a Mean cylinder radius

h Cylinder wall thickness

3 Subscript

hZ
k

1ka2

m Number of circumferential waves

q Generalized coordinate

s a+

t Time

u, v, w Longitudinal, tangential and radial components of displacements

x•a Axial, tangential, and radial coordinates
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LIST OF SYMBOLS (Cont'd)

7 Shear strain

f Axial strain

v Poisson's ratio

p Density (lb'secZ)

E vP-2-2

Circular frequency
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1. 1 FREQUENCY AND DISPLACEMENT EQUATIONS

The development of the necessary free-vibration equations follows the format estab-
lished by Yu. (U. 1) The solution begins with the following equations of motion( L 2) based on the
assumption that N~r = Nxr 0. (See Figs. 1. 1 and 1. 2 for notation.)

8Nxx 8Nx
a-b-•x+-•- - pah = 0

ON S N +

a -- - = 0 (I. 1)

Oxg 0+M ~g 8 ,
a• 8Mx a 8M a• h~x, I a M~x

-- ;+ ++ + +- +N++- pab* 0

Based on the condition that a>>z (so that a + z T a) and the following equations for strains as

functions of displacements

2

i 8u a Zw
i 'Ex =§7x " z 8x-'xT

1 av w z a w (I.2)
a 8+ a - a 2 802

- v +_! av V z !a 82w
7-0 Ox a 0+ a Ox&+

we obtain the following differential equations for the displacements

1 8+ w '&3w F .3 - v 2v Ow
u+; ~-_-T- -2 7 T -vu'4-aff -- xaOxOy Ox a8 t

IF_ 212F 8u 0(.3)

a (1-v) 2t 
0

V4v 2 +v 83w 1 83w F 8 3 2- v
Vv-r Tx 2 Oy ;oy- " ot-"3 T vv

2 Ow ZF a2 v 1
a1 v) Oy a2(1 v) (1.4
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FIGURE 1. 1. NOTATION FOR CYLINDRICAL SHELL
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where

y =

SepaZ (1 v2 )F= E

Eh
3

D=
Z(l - vz)

Eh
K-

The space and time dependent forms of the displacement equations are taken to be

zUmn(X,,t) = C Ajeaj cos m# sin k,,nt (1.6)

vmn(X, +, t) = BjeX j sin m+ sin uknnt (j 1 2,.... 8) (1.7)

a
Wmn(x,•, t) 0 Cjex j cos m# sin %,nt (1.8)

J

where

m = number of circumferential waves
(Zm = number of circumferential nodes)

Substituting Equations (1. 6), (I. 7), and (1. 8) into Equations (I. 3), (1. 4). and (I. 5), we have

BieCjC I 2 n 3 tmnlfl [I -()2] + m4 -

JZ' jeXUL • omn

+ m . CjeXj - m I - (Z+ V)(= 0 (1.9)7 
m
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x.j f 2r .3[+.] n [I -
r -IT-,' -m ]

S -a ejcj a•Mj)7 [I + 0 2]. 10)
Im .vj

n 3 m~ Z f+ (3 Y)mZ r mL

C22 ~ L Z I-m 2n 4' am/ i f

+ +mn{( v)m2 [1 + (1-V)m~ 1-(..

+(3 ~v)krn6 - a (1 3~m [1-( ]
(II( (cj4] 0 (.1

where

+mn = E- P('Onna

h
2

Equations (I. 9), (I. 10), and (1. 11) are simplified by assuming that the shell wall
thickness (a) and length (L) are such that

(2)2

(a•j = ( l~ << I

This simplification permits Equations (I. 6), (I, 7), and (I. 8) to be rewritten as follows

UmnlX,, t) cos m4ý sin 'mnt . cLjCjeXaJ

vmn(X*,t) !L2 sin m* sin •rnnt.CjeXaj (j =1, , 3, 4) (1. 12)

Wmn(X, C, t) coo rni sin (*mnt Z Cjexaj
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I
where

K = z2+ . - ( 3 - v) 4mnm + ( -v )m

KZ = r m( (1. -v). 2+mn)

K 3 = &(24mnv+ (1- v)m

From Equation (I. 11), we also obtain the following frequency equation

S. +mn[2 + (3 - 2,m+ 2km4 ' + ,1jnI_1 - +,m + 1- v),m

j + (3 - v)km 6 1 - (I - v)km 8 - (I - v)(l - YZ)(aaj) 4 = 0 (j= 1,2,3,4) (I. 13)

The solution of Equation (I. 13) for +mn (and therefore the frequency urn) depends
on obtaining the appropriate values of aj(j = 1, 2, 3, 4), which reflect the shell's end-closure
boundary condition. For the fourth degree equation, the expected values of oj would be of the
florm

S= , Z = - , 3 = -7 and 64 = -C

where i = 4T and r is a real number containing a term reflecting the axial mode shape.

I. 2 Lagrangian Equations of Motion

The development of the Lagrangian equations of rpotion necessary in the numerical
analyses for the response of cylindrical shells to impulsive loading begins with the general dis-
placement equations

ux. 0t) = .umn(x, 4, t)

v(x. ,t) = vmn(x, , 0t) (1.14)

w(x, 4, t) = wmn(x, +, t)

Utilizing Equations (I. 12). these may be rewritten in terms of generalized coordinates

u(x, ÷, t) = lUmn(X, *)qmn(t)

v(x.. t) = vmn(x. -)qmn(t) (1. 15)

w(x, 4. t) = wmn(X, *)qmn(t)
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The expression for the kinetic energy is

T h/2 -h + hl{ x,2,t)] +| +(X..t)I2+r*(x. t ,.)]adxd#dz (1.16)

Since Oi(x, +, t) = Umn(x, 40)mn(t) (and similarly for v and w), Equation (I. 16) may
be rewritten as

T = [1- fumn(x, •4)mn(t)i 4 + [Vn(xl +Amn(t)1

+ fWmn(x mn(t)] 2 + Urmn(x- O)uij(x' 104mn(t)•4i(t)

+ Vmn(x, +)vij(x +)Amn(t)4ij(t) + Wmen(X, ')wij(x, A)lmn(t)4ij(t)} dxd* (I. 17)

where mn V ij

Since the generalized coordinates are the principal or normal coordinates, the corre-
sponding vibrations are the principal modes of vibration, and the products of the velocities in
Equation (1. 17) vanish. That is, from Equations (I. 1Z), any one of the last three terms in
Equations (I. 17) would be of the form

4mn~ij Fm(x)Fi(x) [ =0 Gn(l)Gj(•dld) dx
x=O =

where Gn(4 ) = sin ný or cos n+, and G (i) = sin j+ or cos j*.

Thus

= 20 Gn(+)Gj(+)d+ = 0 (for n j j)

and Equation (L. 17) becomes

T a 2 Rmn(t)1m• *n + *mn +* mn] I, 18)

where

Umn = d umn(x, ý)] dxdo (I. 19)

and similarly for vmn and wmn.
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The expression for the potential (strain) energy in terms of the derivative of the dis.
placement components and the generalized coordinates may be obtained by utilizing Equations (I. 2)
and(I. I 5)in the following

E - h/2
2( -, f, -hf + 0 4

Since terms containing products of the generalized coordinates vanish, Equation (1. 20)
may be rewritten as follows

- 2(1 Ea V2 [qmn(t) 2 [h IL 12 F(u, v, w)dxd.+j

+ 0 fL fZw G(u, v. w)dxd] (1.21)
00 0

where F(u, v, w) and G(u, v, w) denote a collection of terms involving the partial derivatives of
Umn(x-.4), Vmn(X, +). and wmn(x, 0) with respect to x and +.

From Equation (I. 21). we have

eV = H(u , v. W)q mnt (1.2Z2)

where H(u, v, w) are merely the combined constant and integral terms.

For Lagrange's equations, we have

d O T1 ST OV
d"J " Sqmt ÷ S = Qmn(t) Z 23)

From Equation (I. 20)

ST =0 (1.24)

d T 1(1.25)
J = pahqmnltl[mn + Vmn + *Wmn] 1.25)

Introducing Equations (I. 22), (I. 24), and (1. 25) into Equation (I. 22)

P um[ + *rn + tmnI Lm(t) + H(u, v, w) qmo(t) ; Qin(t) (I. 26)
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Expressing Equation (I. 26) in a more convenient form, we have

Qmt(t)
4.ntM + W2 %n(t) M (1.27)

nn mnn

where

Mmn : pah[Irn +'•mn +Wmnl (generalized mass)

2 H(u, v, w)
)mn Mmn

Qmn(t) Generalized force

= P(x, 4o, t) wmn(x, O) adxd*

For the numerical solution of Equation (I. 27), the method of finite differences was
used, and, taking the second central differences, we have

qmn(tr) - 2qmn(ti) + qmn(tj)
4mn(ti} )•~

or

qQmn(ti) (At) 2 + [2 - wmdt)2I qmn(tj) - qmn(tj) (1. 28)Sqmn(tr) =1& + 2wr nmn m~
mn

where

tr =ti + At

ti = t. - At

1. 3 Development of Load Spectrums

In obtaining the expression for the generalized force in Equation (I, 27), use was made
of the loading information for cylindrical shells contained in References I. 3 and 1. 4, as well as
other publications. Basically, the time variation of the loading along any one element of the
cylinder can be considered of the form shown in Figure I. 3 or I. 4, the former utilizing the infor-
mation from Reference 1. 3, and the latter from Reference I. 4.

In both cases, time is measured from the instant the shock front strikes the leading
edge (element at + = 0") of the cylinder. Again, both forms include the arrival time (ta) for each
particular cylinder element, the duration of the diffraction loading phase (tD) and the positive
phase duration (t+). The drag phase (for t > tD) is given by

P = Pi(t) + Cd(*)q(t) (1.29)
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whole, for thle time increment 0 << t_4 measured chronologically from ta, the relationship for
PI (F) and q(f) is given in Figure I. S, and Cd(+) is the drag coefficient for the particular cylinder
element under consideration. For the loading shown in Figure I. 3, the drag coefficient Cd(,) is
obtained from Figure 6. 82b, page 272, Reference 1. 3; for the loading shown in.Figure 1. 4, Cd(+)
is found from the curve reproduced in Figure I. 6.

The essential difference between the pressure profiles shown in Figures 1. 3 and 1. 4 lies
in the diffraction phase. Since the pressure profile in Figure I. 4 represented a more realistic
loading condition, there was reason to tend towards this approach. Taking into acccount the experi-
mental model's dimensional ratios (LWD), the crossover times (D/U) and the anticipated (as well as
experimentally recorded) durations, there appeared to be adequate aerodynamic similitude to
justify using the experimental curves in Reference 1. 4 in determining the appropriate values of
Pi. ti and tD for this investigation's loadings. Moreover, the maximum deformations were found
to occur at times approximately equal to or less than the diffraction phase duration (tD). This
meant that the diffraction phase constituted the major (and, in some cases, the entire) deforma-
tional loading.

The curves used in determining the significant values of time and loading required to
define the load spectrum in Figure I. 4 are given in Figures 1. 7 through I. 9. The basic, computa-
tional procedure was as follows: the values of the peak incident overpressure (PI) and positive
phase duration (t+) were obtained from Tables M. I and Ill. 2. The variation of the incident over-
pressure and the dynamic pressure (see Fig. I. 5) were found from the following relations

PId') exp (I. 30)

t. t

q( t) qd I3 exp (1.)

where

2.5PI
qd - 7P° + P (psi)

Po Ambient pressure

Next, the crossover time (D/U) was computed, where

1/2

U = Co (I + (ft per sec) (1. 32)
0

Co = Ambient sound velocity (ft per sec)

From Figures 1. 7 and 1. 8, the appropriate values for ta, ti and tD were obtained for each element
in the cylinder's surface. A numerical analysis to determine the optimum number of elements to
be considered showed that for increments of A+ = 10, 15" or 22. 5', only minor differences
existed in the final numerical results. Thus, in all subsequent computations, the elements con-
sidered were those at + = 0', ZZ.5, 45%, ... 180".

The values of Ri(M) for each element were obtained from Figure 1. 9. The gppropriate

value of PI corresponding to the time ti was determined from Equation (I. 30) (where ti t) or
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from Pe{t) curves such as are shown in Figure 1..5. The critical pressures were then found for
each element

Pi = Rt(*) PIt )

Typical values for critical pressures and times are given in Table I. 1; the corresponding
load spectrums are shown in Figure I. 10.
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I
TABLE 1. 1. CRITICAL TIMES AND PRESSURES (PI = 33 psi,

-t+4 = 1 mmec) D/U = 0.53 meec

I a tl PI tz P 2 t3 P3 tD

0 pal mcc__•c pci mnac_.c6- p.i mr _.m_•c

0 6 .08 a5 32 is .51 21 1.7

Z2.5 .02 .10 70 .37 14 .65 9 1.7

45.0 .07 .11 55 .41 13 .77 3 1.8

67.5 .16 .12 39 .48 11 .97 0 2.2

90.0 .27 .15 24 .52 10 1.1 0 3.0

112.5 .37 .16 15 .58 8 1.3 0 3.3

135.0 .45 .19 12 .6z 7 1.5 0 3.3

157.5 .51 20 16 .68 5 1.6 0 3.0

180.0 .53 .21 25 .74 4 1.8 0 2.7
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APPENDIX II

EXPERIMENTAL PROGRAM

II. 1. OBJECTIVES

It was deemed advisable to undertake a limited experimental program which would provide
data to test the adequacy of the analytical procedures. Knowing that the analytical results would be
in the form of predicted displacements, an experimental technique was evolved for obtaining records
of the response of cylindrical shells or flat plates to known blast loadings.

U. 2. MODEL DESIGN

n. 2. i Cylindrical Shells

All the cylindrical shell models had the same overall nominal dimensions: diameter - 12",
length - 36", shell wall thickness - 0. 036". The three basic configurations differed with respect to
the end-closures and the related shell boundary condition. For the Type CA specimen (Figure 11. 2),
the shell was welded to a 1/2" thick end plate so as to closely approximate a shell with fixed-end
conditions. The end-closures for the Type CB specimen simulated a shell with a simply- supported
boundary condition (Figure U. 3). Type CC shell models use end plates of the same nominal thick-
ness as the shell (0. 036"). These plates were welded to the shell as is shown in Figure UI. 1. The
Type CC models provided an elastic boundary and were used to demonstrate Lhe effect of end
restraints of flat plate end-closures.

Within each CB type model, a scribe plate was mounted at mid-length on the three support
rods (see Figure U. 3). Four, spring-loaded styli, supported on the scribe plate and bearing against
the shell wall, were used to record the deflection at mid-plane points on the 00, 90, 180%, and 270"
elements of cylinder (0" denoting the blast side of the cylinder). A black longitudinal and circumfer-
ential grid on one-inch spacing was painted on the yellow surfaces of the models used in series D, A,
Gand H.

U. 2.2. Circular Flat Plates

The test fixture used to support the circular flat plates is shown in Figure 1. 4. As shown
in the drawing, the plate is simply supported at the boundary; for the fixed boundary condition, an
oversized plate was used and clamped between the inner pipe and the outer ring. In order to evaluate
the effects of membrane and beam action, 0.0312" and 0.0598" thick plates were tested. White
radial lines at 45' were painted on blue plate surfaces.

1. 3. INSTRUMENTATION

Instrumentation consisted of synchronized, high-speed photography to record the cylinders'
dynamic response, mechanical styli recordings of maximum deformations, and a quartz transducer
system to record overpressures and positive phase durations. Each model was covered by one or
two high-speed cameras with film speeds from 3, 000 to 5, 000 frames per second. A sequence cir-
cuit was constructed to synchronize the detonation and camera action so that the initial impact of the
shock wave on the model would occur when the cameras had obtained their maximum speed.

Two quartz transducers were flush-mounted in a 18" X 24" steel surface plate. An adap-
tor, consisting of a double brass fitting separated by a viscous potting material, was constructed to
minimize ground acceleration effects in the pickup. The transducers were placed at ground level at
radial distances from ground zero equal to those from ground zero to the model. The transducers'
outputs were fed through amplifier-calibrators to an oscilloscope and recorded by oscillograph
cameras.

1. 4. TEST PROGRAM

A total of nineteen charges in nine series was detonated. The charges used and the cylin-
drical shell models and flat plates exposed in each shot are given in Table 11. 1. Each cylindrical
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FIGURE 1. 2. TYPE CA CYLINDRICAL SHELL MODEL
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shell model was suspended with nylon cords; the position and orientation of each model relative to
ground zero are shown in Figures U. 5 through U. 8; the controlling distances are given in Table U. 1.

Shot series A through C were used to obtain qualitative information on the deformational

response of the cylindrical shells as influenced by such factors as the distance and orientation of
models with respect to ground zero. In particular, the tests were used to determine the modes of
failure (in the form of permanent deformation or fracture) as relate4 to estimated overpressure.

The tests using 5 lb of flaked TNT (Series E and G) were conducted on Southwest Research
Institute grounds for the purpose of checking out the equipment and instrumentation. In Series G. the
distance between the model and the charge was 10 feet, and, at this distance, it was possible to
photograph small (but measurable) elastic deformations and mode shapes. The ground zero-to-
model distances for the 30-lb shots at Camp Bullis varied from 26 feet to 15 feet; each series of
shots terminated with failure of the model in the form of large, permanent deformations. (See
Figures 11.9 through H. 17.)
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FIGURE 11. 11. SLIGHT REDUCTION IN SHELL DIAMETER
IN MODEL CCZ AFTER SHOT BI

FIGURE II. 1Z. SHELL AND END PLATES PERMANENT
DEFORMATIONS IN MODEL CCZ AFTER SHOT BZ

85
I

I



FIGURE U. 13. SHELL AND END PLATE PERMANENT
DEFORMATIONS IN MODEL CC3 AFTER SHOT Cl

FIGURE U. 14. END PLATE DEFORMATIONS IN MODEL CC4
AFTER SHOT C7
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FIGURE I1. 15. END PLATE DEFORMATION IN MODEL CC5
AFTER SHOT 8

FIGURE n. 16. SHELL DEFORMATION IN MODEL CAZ
AFTER SHOT 7
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i
APPENDIX MI

EXPERIMENTAL RESULTS

M. 1. PRESSURE- TIME MEASUREMENTS

In developing the experimental portion of the program, consideration was given to creating
blast phenomena with conventional, chemical high explosives which, when applied in an analysis pro-
cedure to scaled models of missile bodies, would provide a discernible equivalence for the nuclear
weapon effects on actual missile structures. To this end, full use was made of the information avail-
able in Reference ill. 1, as well as other supporting publications containing information on HE explo-
sions.

The peak shock overpressure, as related to distance, plays a leading role in explosion-
damage correlations. Selection of the controlling parameters for the HE blast phenomena, there-
fore, began with the relation shown in Figure Mi. 1 between the peak overpressure in free air and
scaled (radial) range as proposed by the Kirkwood- Brinkley theory(M, 2) and substantiated by the
experimental evidence of Fisher(M. 3) and Weibull(M. 4). In this relation, the scaled range is
defined as

R
(w)1/ 3

where

R is the radius (feet)

W is the weight (yield) (pounds)

Since the HE explosions would take place on or near the ground, other blast phenomena
associated with surface or near surface bursts were taken into account. Foremost among these
considerations was the ground reflection of the blast wave and the subsequent coalescence of the
incident and reflected waves in the development of the Mach stem.

In accordance with one definition, let WR be the size of burst exploded over a reflector at
a height of burst equal to hR. At a slant range of RR > 2 hR (thereby placing the point in question in
the fat Mach region), the reflected peak overpressure is PR. For a free-air burst of WI, the inci-
dent (or free-air) peak overpressure at a range of RI equal to RR would be PI. Let the yield of WI
be such that, at a range of Ri = RR, the incident and reflected peak overpressures are equal. Since
the scaled slant ranges are

S4K RR R,

by definition
3

RF (reflection factor) - (-I
WR 71i

Accordingly, for a given WR at height of burst hR, one would expect at a range of RR a reflected
peak overpressure in the Mach reflection region equal to that obtained from a free-air burst with
a yield of RFWI.

An indication of the reflection factor to be expected in the Mach reflection was obtained
from the information presented in Figure 1rI. Z relating the reflection factor for TNT to the scaled
height of burst for a particular (and not necessarily ideal) reflecting surface. This and the additional
information for pentolite and the related data for nuclear bursts indicated that scaled heights of
bursts could be selected such that the reflection factor in the far Mach region would be between 0.5
and 2. 0, approximately. In Figure IMI. I are shown the R W curves for these two extremes relating
the reflected peak overpressure with the scaled slant range. The curves in Figure III. 3 provide the
same information for a nonscaled range.
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Since the above method of predicting the reflected peak overpressure was limited to the far
Mach region and in order to avoid having the missile model experience two pressure peaks in the

reglarrefecton egin, he hare szeheight of burst and the ground range we re eselected such[that the triple point would be above the uppermost portion of any model, regardless of its orientation.

The information in the literature provided the necessary relation between the Mach stem
height and the range for various heights of burst. From prior qualitative tests, it was known that the
missile models would sustain damage from a 30-lb charge of TNT at a ground range of 15 to 26 feet,
depending on the orientation and construction of the model itself. The model positioned with its lon-
gitudinal axis perpendicular to ground represented the most severe, triple-point height requirement.
For this arrangement and a ground range of 12 feet, the scaled height of burst would be limited to a
scaled HOB of 0. 8 or less or, for a charge weight of 30 lb of TNT, a burst elevation above ground of
2- 1-/2 feet or less. Referring to Figure 111. 2, this height of burst would provide a reflection factor
of approximately 1. 8 and therefore ground reflection, peak overpressures at the model of from
approximately 15 to 100 psi depending on the ground range.

It was recognized that such factors as the actual ground ieflection characteristics at the test
site, the type of charge and the charge shape would all somewhat influence the blast phenomena.
Accordingly, pressure measuring devices were used to determine, among other things, the extent
of the deviation (if any) oi the predicted peak overpressure. (See Appendix II.)

The results of these pressure readings (shown as points superimposed on the curves shown
in Figures III. I and 11. 2) are especially encouraging particularly in view of the uncertainties
normally associated with blast phenomena measurements. It is seen that with the exception of the
30-lb. H4 shot and the 5-1b, El and EZ shots, a ground reflection factor of between 1. 6 and 1. 7 for
the 30-lb shots and of 0. 7 for the 5-lb shots is quite valid. The values for RF were used for predict-
ing the peak reflected overpressures in those tests where pressure measurements were not obtained.
Table Il1. 1 summarizes the pertinent peak overpressure and reflection factor data.

In addition to the overpressures, the other blast parameters which significantly influence the
extent to which the model is damaged are the positive phase duration and the positive impulse. The
time of arrival of the blast wave is of importance in the establishment and interpretation of the
model's high-speed photography data.

Available free-air curves for arrival time, positive phase duration and positive impulse for
TNT provided suitable approximations for adjusting the pressure recording and high-speed photo-
graphy equipment. Table IMI. 2 offers a comparison between measured and predicted data. A sum-

* mary of the pressure data is given in Table M1. 3.

111.2. HIGH-SPEED PHOTOGRAPHY DATA

The 4ariation of the radial displacement at x = L/Z, 40 = 0. with time (where t = 0 denotes the
arrival of the blast wave at the cylinder's leading edge) is shown in Figures 111. 4 through I11. 13.
Each of the curves was fitted to points obtained from either prints or projections of each individual
frame.

The curves in Figures 111. 8 and 111. 10 need some additional interpretation. The model (CB2)
used in shot HI had been previously subjected to four, 5-lb explosions in shot series G. These
smaller (but repeated exposures) resulted in a slight permanent set at the cylinder's top, leading
edge adjacent to the grooved (for simple support) end plates. In the subsequent shot Hl, this edge

* of the shell moved out of the groove at approximately 1. 7 msec (see Figure I1. 8) after the arrival
of the blast wave. In so doing, the subsequent response of the shell was no longer that of a cylinder
with simple supports at each boundary. However, prior to that time, the shell's response followed
the theoretically predicted displacement pattern.

The same mode of failure was experienced by Model CB3 (Figure IIl. 10) in shot H4. Here,
the shell's leading edge at the top end-plate began to move out of the groove at approximately 1. 5
msec. Although ttie shell did subsequently return to zero displacement at x =LI, * = 0%, the condi-
tion of simple support was no longer in effect. For this reason, the simple-support response was
limited to that portion of the displacement curve prior to 1. 5 mcsc.
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TABLE I11. 1. PEAK OVERPRESSURE IN MACH REFLECTION
REGION (EXPERIMENTAL DATA)

Ground(3)

Shot Charge(l) HOB(Z) Range (A) (B)
No. (lb) (it) (ft) RF = 0.5 RF = 2.0 Ry (C) (D) (E)

El 5 0.33 10 12.8 33.0 1.32 25.1 3,5.0 2.0
EZ 5 0.33 10 12.8 33.0 1.32 25.1 29.3 1.6
E3 5 0.33 10 12.8 33.0 1.32 25.1 18.8 0.9

F) 30 1.5 20 10.5 Z7.2 1.89 ?.7.0 23.0 1.6
FZ 30 1.5 16 16.3 47.0 1.89 46.4 41.0 1.7

GI 5 0.33 10 12.8 33.0 1.32 Z5.1 19.7 0.9
G2 5 0.33 10 12.8 33.0 1.32 45.1 16.1 0.7
G3 5 0.33 10 12.8 33.0 1.32 25.1 16.5 0.7
G4 5 0.33 10 12.8 33.0 1.32 25.1 N.A. N.A.

HZ 30 2.5 20 10.5 27. 2 1.89 27.0 24.6 0.7
H3 30 2.5 20 10.5 27.2 1.89 27.0 23.0 1.6
H4 30 2.5 15 18.5 55.9 1.89 54.0 53.0 1.6

3l 5 0.33 10 12.8 33.0 1.32 25.1 13.1 0.6
JZ 5 0.33 10 12.8 33.0 1.32 25.1 16.2 0.7
J3 5 0.33 5 39.2 140.0 1.32 102.0 64.0 0.7

N. A. Not available.
(1) Flaked TNT.
(Z) Height of burst.
(3) Distance from ground zero to model and/or pressure pickup.
(A) Estimated range of peak overpressure in Mach reflection region (psi);

Kirkwood-Brinkley theory - see Figures Ill. 1 and III. 3.
(B) Reflection factor for hard clay surface as function of HOB (see Figure III. 2).
(C) Peak overpressure based on RF from Column (B).
(D) Experimentally measured peak overpressure (psi).
(E) Adjusted reflection factor based on measured peak overpressure.
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I
TABLE M1. 2. TIME OF ARRIVAL, POSITIVE PHASE DURATION

IN MACH REFLECTION REGION (EXPERIMENTAL DATA)

shot Charge(I) HOB( 2 ) Ground(3 ) (A) (B) (C) (D)
No. (lb) W Range (ft) (msec) (msec) (mec) _mu..)

Dl 30 Z. 2 26 11.5 N.A. - ---

D2 30 2.5 Z2 9.3 7.9 ---

D3 30 2.5 16 5.0 5.3 ......

El 5 0.25 10 3.4 N.A. 2.6 2.7
EZ 5 0. Z5 10 3.4 NA. z.6 Z.8
E3 5 0. Z5 10 3.4 NA. 2.6 2.2

FI 30 1.5 20 7.4 N.A. 5.1 4.2
F2 30 1.5 16 4.9 N. Ai 4.0 4.3

G1 5 0.25 10 3.4 4.5 2.6 2.4
G2 5 0.25 10 3.4 3.9 2.6 2.3
G3 5 0.25 10 3.4 3.9 z.6 2.5
G4 5 0.25 10 3.4 3.8 2.6 2.7

HI 30 Z. 5 20 7.4 7.1 5.1 N.A.

H2 30 2.5 20 7.4 N.A. 5.1 6.0
H3 30 Z. 5 20 7.4 N.A. 5.1 04.5
H4 30 Z.5 15 3.7 N.A. 3.9 N.A.

j1 5 0.25 10 3.4 N.A. z.6 3,1
J2 5 0.25 10 3.4 N.A. 2.6 3.4
J3 5 0.25 5 1.2 N.A. 1.6 1.1

N.A. Not available.
(1) Flaked TNT.
(2) Height of burst.
(3) Distance from ground zero to model and/or pressure pickup.
(A) Estimated time of arrival - ta
(B) Recorded time of arrival - ta (from high speed photography).
(C) Estimated positive phase duration - t+
(D) Recorded positive phase duration - t+
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TABLE 111. 3. SUMMARY OF PEAK INCIDENT OVERPRESSURES
AND POSITIVE PHASE DURATIONS

(1) E: end-on loading; S: side-on (4) E - elastic; F - fixed;
loading; 0: oblique loading S - simple support

(2) Peak incident overpressure (5) Experinmental - See
Table III. 1 or 1I. 2

(3) Positive phase duration

Shot Model (1) PI (Z) t+ (3) Boundary
Model No. Orientation (psi) (msec) Restraint (4)

Ccl Al E 4 7 E
A2 !0 6
A3 24 4
Bl S 18 5
B2 23 4.5
B3 32 4

CC2 Al z 9
AZ 6 7
A3 17 5
BI 29 4
B2 38 3

CC3 C1 31 5
CC4 Cl E 22 6
CC4 C2 E 27 5
CC5 Cl 0 13 7
CC5 C2 0 17 6
CAI C1 E 22 6 F
CAI C2 E 27 4
CAZ Cl S 27 4
CA3 DI 15 6.5

D2 19 5.5
D3 42 3.8

CBI F1 27 4

CB1 F2 46 4
CBZ G1 20 (5) 2.4 (5)

G2 16 (5) 2.3 (5)
G3 17 (5) 2.3 (5)

G4 18 2.5
HI 25 5.1

CB3 H3 23 (5) 4.5
CB3 H4 53 (5) 3.9
PI Jil 25 3
P2 J2 25 3
P2 J3 102 1
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